Accelerating 2D NMR relaxation dispersion experiments using iterated maps
نویسندگان
چکیده
منابع مشابه
Accelerating multidimensional NMR and MRI experiments using iterated maps.
Techniques that accelerate data acquisition without sacrificing the advantages of fast Fourier transform (FFT) reconstruction could benefit a wide variety of magnetic resonance experiments. Here we discuss an approach for reconstructing multidimensional nuclear magnetic resonance (NMR) spectra and MR images from sparsely-sampled time domain data, by way of iterated maps. This method exploits th...
متن کاملMechanism of E-cadherin dimerization probed by NMR relaxation dispersion.
Epithelial cadherin (E-cadherin), a member of the classical cadherin family, mediates calcium-dependent homophilic cell-cell adhesion. Crystal structures of classical cadherins reveal an adhesive dimer interface featuring reciprocal exchange of N-terminal β-strands between two protomers. Previous work has identified a putative intermediate (called the "X-dimer") in the dimerization pathway of w...
متن کاملTransverse relaxation optimized triple-resonance NMR experiments for nucleic acids.
Triple resonance HCN and HCNCH experiments are reliable methods of establishing sugar-to-base connectivity in the NMR spectra of isotopicaly labeled oligonucleotides. However, with larger molecules the sensitivity of the experiments is drastically reduced due to relaxation processes. Since the polarization transfer between 13C and 15N nuclei relies on rather small heteronuclear coupling constan...
متن کاملUltrafast solid-state 2D NMR experiments via orientational encoding.
Among the methods proposed in recent years toward the acceleration of multidimensional NMR acquisitions is an "ultrafast" approach, capable of delivering arbitrary 2D correlations within a single scan. This scheme operates by parallelizing the indirect-domain temporal incrementation involved in 2D acquisitions, using as aid an ancillary inhomogeneous frequency broadening acting in combination w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biomolecular NMR
سال: 2019
ISSN: 0925-2738,1573-5001
DOI: 10.1007/s10858-019-00263-3